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Second-moment nuclear quadrupole resonance
measurement of127I in NaIO 4
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Abstract. This work reports measurements of both homonuclear dipolar coupling and
heteronuclear dipolar plus quadrupolar NQR second moments of a spin-5/2 nucleus,127I, by
means of the Hahn and solid echoes sequences for NaIO4. The homonuclear second-moment
experimental result is compared with the theoretical expected value. In addition, a demonstration
is given to show that the results are the Van Vleck moments.

1. Introduction

The present work consists essentially of two parts. One is the theoretical introduction
of the density matrix method which is necessary to give an introduction and to develop
an explanation of the experimental results. This first part is entirely contained in the
introduction. The experimental section contains information about the sample under study,
the measured data, and some considerations concerning the spectrometer performance
required to obtain the desired measurements. Finally, the conclusion shows that the
experimental results are in good agreement with the expected theoretical values and that the
measured moments are the Van Vleck second moments.

The density matrix formalism has been proved to be particularly suitable for describing
the evolution as well as the response of a spin system to a sequence of radio-frequency (RF)
pulses [1, 2]. In addition, it has been shown that the spin-density operator in the interaction
representation [3], for the nuclear quadrupole resonance (NQR), is very convenient as
regards obtaining a general expression for the spin echoes following a pulse sequence
[4, 5]. The method consists in writing all the operators of interest as linear combinations of
generators of a particular basis of the Lie algebra of the SU(n) group. For the case of the
NQR of spinI = 5

2 the group to be considered is SU(6) [5]. The system Hamiltonian is

H(t) = HQ +HD +Hrf (t) (1)

whereHD andHrf (t) are the dipolar and the RF Hamiltonians respectively, the latter taking
account of the time perturbation needed to induce a transition between the quadrupolar levels.
Finally, HQ is the quadrupolar Hamiltonian, which is conveniently written as

HQ =
∑
k

1

2
ωkQ(I

k
0 + ηI k1 ) (2)

where the indexk labels the resonant nuclei,η is the electric field gradient (EFG) asymmetry
parameter, and

I0 = 3I 2
z − I2 I1 = 1

6
(I 2
+ + I 2

−) ωQ = e2qQ

2I (2I − 1)
(3)
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where the parametersq andQ are the field gradient and the quadrupolar moment per unit
of the electronic charge respectively.

The spin system is assumed to be initially at thermal equilibrium with its lattice at a
temperature such that the high-temperature approximation is valid; thus the initial state is
described by

ρ0 = C
(

1− HQ

kBT

)
− C

kBT
= Tr{ρ0HQ}

Tr{H 2
Q}
≡ E0Q

H2
0

(4)

where kB is the Boltzmann constant andC is a normalization factor. Subsequently, a
convenient matrix representation of the Lie algebra of the SU(6) group is obtained [5],
namely a set of 35 anti-Hermitian traceless matrices,Vi , of order 6× 6, for which both an
inner product and an operator expansion can be written out, as follows:

〈A|B〉 = Tr{AB †} O =
35∑
i=1

〈Vi |O〉Vi . (5)

Thereafter, the above-mentioned operators are transformed into the interaction represent-
ation by means of the operator

U(t) = exp

{
−i
∑
k

1

2
ωkQ(I

k
0 + ηI k1 )

}
. (6)

Thus, the dynamics of the system is now described by

d

dt
ρ̃(t) = i h̄

[
ρ̃(t), H̃eff (t)

]
(7)

where the effective interaction Hamiltonian is

H̃eff (t) =
∑
k

1

2
1ωk I

k
0 +H 0

D + H̃rf (t) (8)

where it has been assumed that the parameterη = 0, 1ωk takes into account the fact that
different spins resonate at frequencies other than that of the centre of the line,H 0

D is the
secular part of the dipolar Hamiltonian, and̃Hrf (t) takes the following matrix form:

H̃rf (t) = ω1

2
[F+ 2A cos(ωt)− 2B sin(ωt)+ D cos(2ωt)+ R sin(2ωt) cos(tω)] (9)

whereF, B, D, andR are matrix operators cast in terms of the matricesVi [5]. The relevant
contribution of (9) in the rotating frame at frequencyωQ, i.e. under resonance conditions,
is the zero-order term of the Fourier series ofH̃rf ; this reduces to

H̃rf = ω1

2
A. (10)

It has also been shown [5] that after applying a resonant RF pulse of durationtw1, such
that 2tw1 fully saturates the spin response, and under the approximation of infinite RF power,
the state of the spin system is described by

ρ̃(tw1) = −
E0Q

2H 2
0

[ω̃0U+ (1+O)B] (11)

whereω̃0 represents an average frequency over the NQR spectrum which for a symmetric
resonance line coincides with the centre of the peak, and the factor premultiplying the
second term is nearly equal to one for a narrow peak. On similar grounds the state of the
system after an echo pulse sequence can be obtained either for a Hahn echo or a solid echo:

ρ̃(t + tw2 + τ + tw1) = e−iH̃ tMe−iH̃ τ ρ̃(tw1)e
iH̃ τM†eiH̃ t (12)
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where

M = exp{−iH̃rf tw2}. (13)

The matricesVi as well as the matrix operators introduced above,A, B, D, F, andR, are
given explicitly in the appendix. A better understanding of what kind of role some of these
operators take [5] is achieved by observing that, as in the classical picture of NMR, where
in the interaction representation there is a quantization direction and two perpendicular axes
(x̃, ỹ, z̃), the matrix operatorsI0, A, andB are in orthogonal directions, not in real space
but in a matrix space, assigned as follows:

I0 z̃

A x̃

B ỹ.

Once the density matrix is known, the signal following a RF pulse sequence is obtained
from

G(t, τ ) = Tr{ρ̃(t + tw2+ τ + tw1)ĨT } (14)

where ĨT is the total projection of the spin contribution in the interaction representation,
which reduces to

ĨT = 2A cos(ωt)+ 2B sin(ωt)+ F. (15)

On performing a power series ont and τ of equation (10), knowing thatG(t, τ ) =
G(−t,−τ), an expression for the signal is obtained:

G(t, τ ) = E0q

2H2
0

ω0

∞∑
n=0

∞∑
m=0

(−iτ)n(it)m

0(n+ 1)0(m+ 1)

× Tr
{

[H̃ , [H̃ , . . . , [H̃ ,B]]] M[H̃ , [H̃ , . . . , [H̃ ,B]]] M†
}
. (16)

In order to decouple the homonuclear spin–spin contribution to the second moment from
the heteronuclear and quadrupolar ones it is necessary to consider both the Hahn and the
solid echoes. Thus we definine the moments as

MII
2 =

1

Tr{B2}Tr{[HII
D , [HII

D ,B]]B} (17)

M
Q+IS
2 = 1

Tr{B2}Tr{[HQ+IS, [HQ+IS,B]]B}. (18)

After some algebra, the expressions for the Hahn and the solid echoes up to second order
are given respectively by

GHahn(t, τ ) = E0q

2Q2
ω0 Tr{B2}

{
Y − Y M

II
2

2
(t + τ)2

+ (1− Y )M
Q+IS
2

4
(t + τ)2− (1+ Y )M

Q+IS
2

4
(t − τ)2+ · · ·

}
(19)

Gsol(t, τ ) = − E0q

2Q2
ω0 Tr{B2}

{
1− 1

4
[MII

2 (1−X)(t + τ)2++MII
2 (1+X)(t − τ)2

+ MQ+IS
2 (t + τ)2+ M

Q+IS
2 (t − τ)2] + · · ·

}
(20)
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where the parametersY andX may either be measured or calculated under some physical
assumptions about the resonance line symmetry and the spin of the resonant nucleus. In
particular, the parameterY characterizes the effective spin flip induced by the RF. The
desired value isY ≈ 1, for the special case whereY = 1 is that for which the condition of
saturation is fully achieved. Similar theoretical considerations are valid forX.

The parameterY is directly obtained by the measurement of both the Hahn and solid
echoes at values ofτ ≈ 0, and from equations (16) and (17) we have the result

Y =
∣∣∣∣GHahn(0)

Gsol(0)

∣∣∣∣ . (21)

Also, from equations (19) and (20) it is easy to obtain a linear relation onτ with
both the homonuclear and heteronuclear quadrupolar second moments. Equations (22) and
(23) show the linear dependence onτ of the absolute value of the derivative of the echo
amplitude with respect toτ scaled relative to its value atτ = 0 (in both cases it has been
assumed thatY ≈ X ≈ 1):∣∣∣∣ (d/dτ)GHahn(τ, τ )

GHahn(0, 0)

∣∣∣∣ = 4MII
2 τ (22)∣∣∣∣ (d/dτ)Gsol(τ, τ )

Gsol(0, 0)

∣∣∣∣ = 2MQ+IS
2 τ. (23)

These relations allow one to measure the second moments by obtaining the amplitudes of the
echo signals for different values of the pulse separationτ . Some experimental considerations
must be taken into account—namely thatGHahn(0) andGsol(0) cannot be measured directly.
This is mainly due to the coil ringing which prevents an accurate determination of the pulse
duration being made for small values ofτ . Therefore, only by means of an extrapolation
of the echo amplitude toτ = 0 can the former quantities be obtained. It is important to
note that this does not involve an ordinary spin-echo experiment where after a given pulse
sequence the entire signal is acquired and analysed. This method requires the sampling of
just one experimental point for each value ofτ , and after several measurements the moments
are obtained from a plot made according to equations (19) and (20).

2. Experimental details

The compound studied on this work is NaIO4 and it was purchased from Sigma. Special
care was taken with the sample—that is, the handling of this compound was in a pure
nitrogen atmosphere—and no recrystallization was needed. The compound crystallizes in
a tetragonal C64h structure with the lattice parametersa = b = 5.337 Å and c = 11.947 Å
[6]. The NQR measurements were performed at room temperature in a Bruker-MSL 300
spectrometer with multinuclear high-power unit and a broad-band high-power tunable probe.
The NaIO4 exhibits an NQR resonance at 13.220 294 MHz for127I nuclei and the electric
field gradient asymmetry parameterη = 0.

Figures 1 and 2 show the echo amplitudes corresponding to Hahn and solid echo
sequences, respectively, as functions of the RF-pulse separation squared,τ 2. The data
clearly show two zones, one at large values ofτ 2 where the echo amplitudes decay non-
linearly, and the second zone at small values ofτ 2 where the amplitudes behave linearly.
The relevant results are listed in table 1.

The units of the data in table 1 are echo amplitude times Hz2 for the slope, and echo
amplitude for the abscissa. With these data, and using equation (21), an experimental value
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Figure 1. The Hahn echo amplitude versusτ2.

Table 1.

Hahn echo Solid echo

Slope atτ = 0 −7.625× 107 −2.045× 109

Abscissa atτ = 0 15.84 14.83

of the parameterY ≈ 1.1± 0.09 is obtained. The expected theoretical value corresponding
to a symmetric and fully saturated resonance line isY = 1.

With the above data, and according to equations (19) and (20), the experimental values
of the homonuclear and heteronuclear plus quadrupolar second moments are respectively

MII
2 = (2.4± 0.2)× 106 Hz2 M

Q+IS
2 = (1.4± 0.2)× 108 Hz2.

The derivation of the above parameters is based upon the assumption that moments
of order higher than two do not contribute to the series expansion of equations (17) and
(18). In order to make an estimation, and for the sake of simplicity, let us assume that
the resonance line is well described by a Gaussian profile. For such a symmetric line the
free-induction decay signal following a singleπ/2 RF pulse is given by

G(τ) = G(0)− 1

2
M2τ

2+ 1

16
M4τ

4− · · · (24)

where the second and fourth moments are related to the linewidth1ω by

M2 =
(

1

1.18

)2

1ω2 M2 = 3

(
1

1.18

)4

1ω4. (25)
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Figure 2. The solid echo amplitude versusτ2.

In order to drop the fourth-moment term from equation (22), it is desirable that the ratio∣∣∣∣∣ 1
16M4τ

4

1
2M2τ 2

∣∣∣∣∣ < 10−2. (26)

It follows that1ω τ < 0.2, and assuming that the spectrometer dead time following an RF
pulse is of the order of 30µs, the desired NQR linewidth should be1ω ≈ 7 kHz. These
results imply that for relatively narrow resonance lines the contribution of the dropped term
to the echo is of the order of 1% and all previous extrapolations of the echo amplitudes to
τ = 0 are valid. It must be pointed out that the broader the resonance line, the greater the
number of terms in the expansions of equations (17) and (18) that should be considered.

3. Conclusions

Taken together with previous theoretical calculations of second moments of pure NQR spin
echoes for nuclei with spin52 [5], the present work shows that their experimental values
are obtained by means of two pulse sequences, namely the Hahn and the solid echo ones.
The values ofMII

2 andMQ+IS
2 are measured with errors of 9% and 14% respectively. As a

way of making a comparison, a theoretical value ofMII
2 is obtained from a first-principles

calculation of Van Vleck’s homonuclear second moment [7], in terms of the crystal lattice
parameters [8]. This is given by

MII
2 = g4β4

∑
j

r−6
jk

[(
623

24
+ 4β2

jk

)
−
(

99

16
+ 12β2

jk

)
γ 2
jk +

69

16
γ 4
jk

]
(27)
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where the direction cosines and distances between iodine nearest neighbours in NaIO4 are

β12 = −β13 = 0 γ12 = γ13 = 0.7457 r12 = r13 = 4.0052Å.

The homonuclear second-moment value obtained from equation (27) is

MII
2 = 2.3068× 106 Hz2.

This number is in very good agreement with measured value. However, a question that
has not been answered in previous publications is that of whether the measured moments,
obtained by the method reported in this work, are Van Vleck’s moments. In order to provide
an answer let us consider the following. Firstly, from equation (10), where we have set the
values oftw2 and t equal to zero, the density matrix at a timeτ after the first RF pulse is

ρ̃(τ ) ∝ U(τ )− B(τ ). (28)

Next, taking into consideration the fact that the NQR signal is detected in quadrature with
the RF pulse and taking into account equation (13) in the interaction representation,

ĨT ∝ B (29)

where B ≡ B(τ = 0). This allows to calculate the free-induction decay (FID) up to a
constant of proportionality as follows:

G(τ) ∝ Tr{ρ̃(τ )ĨT } = 〈U(τ )|B〉 − 〈B(τ )|B〉 . (30)

Assuming thatU(τ = 0) ⊥ B, for very short times the following relation is valid:∣∣∣∣ 〈U(τ ∼ 0)|B〉
〈B(τ ∼ 0)|B〉

∣∣∣∣� 1. (31)

This allows to write the FID as

G(τ) ∝ 〈B(τ )|B〉 = ‖B2‖ − i〈[HQ +H 0
D,B]|B〉τ

− 1

2!
〈[HQ +H 0

D, [HQ +H 0
D,B]] |B〉τ 2+ · · · . (32)

Therefore, within the range of validity of equation (29) and assuming that the signal
amplitude detected is for values ofτ ' 0 and that the data are extrapolated to their values
for τ = 0, the moments are given by

Mn = 〈
n times︷ ︸︸ ︷

[HQ +H 0
D, [HQ +H 0

D, · · · , [HQ +H 0
D,B]] · · ·] |B〉

‖B‖2
. (33)

This equation shows that the moments given by equations (15) and (16) are Van Vleck
moments.
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Appendix

Here, we give the matrix presentation of the Lie algebra of the SU(6) group:

V1 = 1

2
√

3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 V2 = 1

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



V3 = 1

2


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 V4 = 1

2


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1



V5 = 1√
2


0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 V6 = 1

2


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



V7 = 1

2


0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

 V8 = 1

2


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0



V9 = 1

2


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 V10 = 1

2


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



V11 = 1

2


0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

 V12 = 1

2


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0



V13 = 1

2


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 V14 = 1

2


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
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V15 = 1√
2


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 V16 = 1

2


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0



V17 = 1

2


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

 V18 = 1

2


0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0



V19 = 1

2


0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

 V20 = 1

2


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



V21 = i

2


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 V22 = i

1


0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0



V23 = i

2


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

 V24 = i

2


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0



V25 = i

2


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 V26 = i

2


0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0



V27 = i

2


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 V28 = i

2


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



V29 = i

2


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 V30 = i√
2


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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V31 = i

2


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 V32 = i

2


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0



V33 = i

2


0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

 V34 = i

2


0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0



V35 = i

2


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .
The matrix operatorsA, B, D, F, andR are given by

A =
√

2
∑
k

(αkV18− γkV26)

B =
√

2
∑
k

(αkV33+ γkV11)

D =
√

5(V20− V21)

F =
∑
k

[
3√
2
αkV15− 3√

2
γkV30+ δk

(
3V3+ 2V4+ 3√

2
V5

)]
R = −

√
5(V35+ V6)

whereαk, γk, andδk are the angular functions of the direction cosines of the principal-axes
system at the resonant nucleusk.
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