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Abstract. This work reports measurements of both homonuclear dipolar coupling and
heteronuclear dipolar plus quadrupolar NQR second moments of a spin-5/2 ndéiéuby

means of the Hahn and solid echoes sequences for Nale homonuclear second-moment
experimental result is compared with the theoretical expected value. In addition, a demonstration
is given to show that the results are the Van Vleck moments.

1. Introduction

The present work consists essentially of two parts. One is the theoretical introduction
of the density matrix method which is necessary to give an introduction and to develop
an explanation of the experimental results. This first part is entirely contained in the
introduction. The experimental section contains information about the sample under study,
the measured data, and some considerations concerning the spectrometer performance
required to obtain the desired measurements. Finally, the conclusion shows that the
experimental results are in good agreement with the expected theoretical values and that the
measured moments are the Van Vleck second moments.

The density matrix formalism has been proved to be particularly suitable for describing
the evolution as well as the response of a spin system to a sequence of radio-frequency (RF)
pulses [1, 2]. In addition, it has been shown that the spin-density operator in the interaction
representation [3], for the nuclear quadrupole resonance (NQR), is very convenient as
regards obtaining a general expression for the spin echoes following a pulse sequence
[4, 5]. The method consists in writing all the operators of interest as linear combinations of
generators of a particular basis of the Lie algebra of thén$droup. For the case of the
NQR of spinl = g the group to be considered is SU(6) [5]. The system Hamiltonian is

H(t) = Hp + Hp + H,¢ (1) Q)
whereHp and H,¢(¢) are the dipolar and the RF Hamiltonians respectively, the latter taking

account of the time perturbation needed to induce a transition between the quadrupolar levels.
Finally, Hy is the quadrupolar Hamiltonian, which is conveniently written as

1
Ho = SalpUs +nl) @
k
where the index labels the resonant nuclej,is the electric field gradient (EFG) asymmetry
parameter, and
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where the parametegsand Q are the field gradient and the quadrupolar moment per unit
of the electronic charge respectively.

The spin system is assumed to be initially at thermal equilibrium with its lattice at a
temperature such that the high-temperature approximation is valid; thus the initial state is
described by

H C Tr{poHo} _ Eo
/00=C< _Q) - = el T (4)
kBT kBT Tr{HQ} HO

where kp is the Boltzmann constant and is a normalization factor. Subsequently, a
convenient matrix representation of the Lie algebra of the SU(6) group is obtained [5],

namely a set of 35 anti-Hermitian traceless matridgs,of order 6x 6, for which both an
inner product and an operator expansion can be written out, as follows:

35
(A|B) = Tr{AB} 0= (Vi[O)V.. (5)
i=1

Thereafter, the above-mentioned operators are transformed into the interaction represent-
ation by means of the operator

. 1
U(r) = exp{—lzzka(Ié‘—f-nlf)}. (6)
k

Thus, the dynamics of the system is now described by

d T .

42O =R [50). Ay ()] ™
where the effective interaction Hamiltonian is

. 1 .

Heypp(t) = Xk: 5 Ao I+ HY+ H@) ®)

where it has been assumed that the paramgter0, Aw; takes into account the fact that
different spins resonate at frequencies other than that of the centre of theifinis the

secular part of the dipolar Hamiltonian, arﬂi;lf(t) takes the following matrix form:
FI,f () = %[F + 2A coqwt) — 2B sin(wt) + D cog2wt) + R sin(2wt) coStw)] 9)

whereF, B, D, andR are matrix operators cast in terms of the matri¢e§5]. The relevant
contribution of (9) in the rotating frame at frequeney, i.e. under resonance conditions,
is the zero-order term of the Fourier seriesHf;; this reduces to

Ay = A, (10)

It has also been shown [5] that after applying a resonant RF pulse of duratisuch
that 2,,, fully saturates the spin response, and under the approximation of infinite RF power,
the state of the spin system is described by

Pltu) = —ELQZ[CZ)OU + (14 0)B] (11)
2H;
whereag represents an average frequency over the NQR spectrum which for a symmetric
resonance line coincides with the centre of the peak, and the factor premultiplying the
second term is nearly equal to one for a narrow peak. On similar grounds the state of the
system after an echo pulse sequence can be obtained either for a Hahn echo or a solid echo:

Bt + ty, + T + 1) = € A Me 7 51, )T MIH! (12)
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where
M= eXp{_iI:Irfth}- (13)

The matricesV; as well as the matrix operators introduced abdveB, D, F, andR, are

given explicitly in the appendix. A better understanding of what kind of role some of these
operators take [5] is achieved by observing that, as in the classical picture of NMR, where
in the interaction representation there is a quantization direction and two perpendicular axes
(%, y, 2), the matrix operatorgy, A, andB are in orthogonal directions, not in real space

but in a matrix space, assigned as follows:

Io z
A @
B 7.

Once the density matrix is known, the signal following a RF pulse sequence is obtained
from

G(t,t) = Tr{p(t + tup + T + 1) I7} (14)

where I is the total projection of the spin contribution in the interaction representation,
which reduces to

I = 2A cogwt) + 2B sin(wr) + F. (15)

On performing a power series gnand r of equation (10), knowing that (z, t) =
G(—t, —1), an expression for the signal is obtained:

(—i)"(it)™
G, 1) = ZHO O;Z F(n+ DI (m+1)

x Tr {[H, [A,....[H B]MA,[A,... [A B M"‘}. (16)

In order to decouple the homonuclear spin—spin contribution to the second moment from
the heteronuclear and quadrupolar ones it is necessary to consider both the Hahn and the
solid echoes. Thus we definine the moments as

11 _ 1 11 11
My = Tr{Bz}Tr{[HD ,[Hp', B]IB} (17)
O+IS __ 1 O+IS 0+IS

After some algebra, the expressions for the Hahn and the solid echoes up to second order
are given respectively by

GHann(t, T) = a)OTr{B }{Y YM (t+ "-')2

Eq,
202

+(@1-Y) (t+1)2—1+7Y) (t — 1)+

Q+IS O+I1S
M.
} (19)

Gsollt, T) = —%wo Tr{BZ}{l - %[Mz”(l —X)(t + 1)+ +MP A+ X)(r — 1)?

+ MZ S+ 0%+ MET -+ } (20)
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where the paramete$ and X may either be measured or calculated under some physical
assumptions about the resonance line symmetry and the spin of the resonant nucleus. In
particular, the paramete¥ characterizes the effective spin flip induced by the RF. The
desired value i¥ ~ 1, for the special case wheke= 1 is that for which the condition of
saturation is fully achieved. Similar theoretical considerations are vali& for

The parametel’ is directly obtained by the measurement of both the Hahn and solid
echoes at values af ~ 0, and from equations (16) and (17) we have the result

GHahn(O)
Gsol(o) ’

Also, from equations (19) and (20) it is easy to obtain a linear relatiorr omith
both the homonuclear and heteronuclear quadrupolar second moments. Equations (22) and
(23) show the linear dependence orof the absolute value of the derivative of the echo
amplitude with respect te scaled relative to its value at= 0 (in both cases it has been
assumed that ~ X ~ 1):

(d/dt)GHann(t, T)

Y = ‘ (1)

=4M} 22

Gahn(0, 0) 2 ()
(d/dt)Gsol(T, ) Q+1S

S TAESR T VN —2M . 23

Geol(0, 0) 2 7 (@3)

These relations allow one to measure the second moments by obtaining the amplitudes of the
echo signals for different values of the pulse separatioBome experimental considerations
must be taken into account—namely tliit,n,(0) and G5 (0) cannot be measured directly.

This is mainly due to the coil ringing which prevents an accurate determination of the pulse
duration being made for small values of Therefore, only by means of an extrapolation

of the echo amplitude te = 0 can the former quantities be obtained. It is important to
note that this does not involve an ordinary spin-echo experiment where after a given pulse
sequence the entire signal is acquired and analysed. This method requires the sampling of
just one experimental point for each valuergfand after several measurements the moments
are obtained from a plot made according to equations (19) and (20).

2. Experimental details

The compound studied on this work is Nal@nd it was purchased from Sigma. Special
care was taken with the sample—that is, the handling of this compound was in a pure
nitrogen atmosphere—and no recrystallization was needed. The compound crystallizes in
a tetragonal €, structure with the lattice parameters= b = 5.337 A andc = 11.947 A

[6]. The NQR measurements were performed at room temperature in a Bruker-MSL 300
spectrometer with multinuclear high-power unit and a broad-band high-power tunable probe.
The NalQ exhibits an NQR resonance at.230 294 MHz for'?’| nuclei and the electric

field gradient asymmetry parametee= O.

Figures 1 and 2 show the echo amplitudes corresponding to Hahn and solid echo
sequences, respectively, as functions of the RF-pulse separation sqtarehe data
clearly show two zones, one at large valuesréfwhere the echo amplitudes decay non-
linearly, and the second zone at small valuesdfvhere the amplitudes behave linearly.
The relevant results are listed in table 1.

The units of the data in table 1 are echo amplitude time% fazthe slope, and echo
amplitude for the abscissa. With these data, and using equation (21), an experimental value
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Figure 1. The Hahn echo amplitude versus.

Table 1.

Hahn echo Solid echo
Slope atr =0 —7.625x 107 —2.045x 10°
Abscissaat =0 15.84 14.83

of the paramete¥ ~ 1.1+ 0.09 is obtained. The expected theoretical value corresponding
to a symmetric and fully saturated resonance lin& is 1.

With the above data, and according to equations (19) and (20), the experimental values
of the homonuclear and heteronuclear plus quadrupolar second moments are respectively

M = (2440.2) x 1¢P HZ METS = (144 0.2) x 1¢° HZ.

The derivation of the above parameters is based upon the assumption that moments
of order higher than two do not contribute to the series expansion of equations (17) and
(18). In order to make an estimation, and for the sake of simplicity, let us assume that
the resonance line is well described by a Gaussian profile. For such a symmetric line the
free-induction decay signal following a singte’2 RF pulse is given by

1 1
= — TMot? 4+ Myt — - 24
G(t) = G(0) S Mat” + T Mat (24)
where the second and fourth moments are related to the linewidtiy

1\? 1\*
My=|-"-| Acw? My, =3 -"-) Aw* 2
2 (1.18) @ 2 3(1.18) @ (25)
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Figure 2. The solid echo amplitude versus.

In order to drop the fourth-moment term from equation (22), it is desirable that the ratio
TJESM“TA

1
§M2‘L'2

<102 (26)

It follows that Aw t < 0.2, and assuming that the spectrometer dead time following an RF
pulse is of the order of 3@s, the desired NQR linewidth should ke» ~ 7 kHz. These
results imply that for relatively narrow resonance lines the contribution of the dropped term
to the echo is of the order of 1% and all previous extrapolations of the echo amplitudes to
r = 0 are valid. It must be pointed out that the broader the resonance line, the greater the
number of terms in the expansions of equations (17) and (18) that should be considered.

3. Conclusions

Taken together with previous theoretical calculations of second moments of pure NQR spin
echoes for nuclei with spiri [5], the present work shows that their experimental values

are obtained by means of two pulse sequences, namely the Hahn and the solid echo ones.
The values ofv}! and M$*'* are measured with errors of 9% and 14% respectively. As a
way of making a comparison, a theoretical valueMf’ is obtained from a first-principles
calculation of Van Vleck’s homonuclear second moment [7], in terms of the crystal lattice
parameters [8]. This is given by

.[/623 99 69
M2” = 84/34erk6 |:<24 + 4,31‘2> - <16 +1 jzk)yjzk + 167/;}{] (27)
J
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where the direction cosines and distances between iodine nearest neighbours jraialO
Br2=—P13=0 Vi2=y13=0.7457  rip = r13 = 4.0052A.
The homonuclear second-moment value obtained from equation (27) is
M}" =2.3068x 10° HZ%.

This number is in very good agreement with measured value. However, a question that
has not been answered in previous publications is that of whether the measured moments,
obtained by the method reported in this work, are Van Vleck’s moments. In order to provide
an answer let us consider the following. Firstly, from equation (10), where we have set the
values oft,,, andr equal to zero, the density matrix at a timeafter the first RF pulse is

o(t) o U(r) — B(7). (28)

Next, taking into consideration the fact that the NQR signal is detected in quadrature with
the RF pulse and taking into account equation (13) in the interaction representation,

Ir B (29)

whereB = B(r = 0). This allows to calculate the free-induction decay (FID) up to a
constant of proportionality as follows:

G(1) «x Tr{p(D)lr} = (U(@)[B) = (B()IB). (30)
Assuming thatU(r = 0) L B, for very short times the following relation is valid:

’(U(T ~0)/B)

- 1. 31
(B(c ~0>|B>’<< (1)

This allows to write the FID as

G(v) o (B(1)|B) = |IB?| —i([Hp + HJ, B]|B)t

— %([HQ+H0,[HQ+H0,B]]|B)r2+-~-. (32)

Therefore, within the range of validity of equation (29) and assuming that the signal
amplitude detected is for values of~ 0 and that the data are extrapolated to their values
for ¢ = 0, the moments are given by

n times

_ ([Ho+ HY.[Ho + HY. -~ ,[Hg + HS,BI--] |B)
- B2 '

M, (33)

This equation shows that the moments given by equations (15) and (16) are Van Vleck
moments.
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Here, we give the matrix presentation of the Lie algebra of the SU(6) group:
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The matrix operatora, B, D, F, andR are given by
A= \/EZ(ales — Y& V26)
k

B =+v2) (aVas+ %V
K

D = /5(V0 — V1)

3 3 3
F= |:O[kV15 — — Y Vao+ & <3V3 + 2V, + V5>j|
Xk: V2 V2 V2

R = —v/5(Vas + V)

whereqy, yi, and$; are the angular functions of the direction cosines of the principal-axes
system at the resonant nucleus

References

[1] Slichter C P 1990Principles of Magnetic Resonan8ed edn (Berlin: Springer)

[2] Ernst R R, Bodenhausen G and Wokaun A 1%tnciples of NMR in One and Two Dimensiof@xford:
Clarendon)

[3] Prat J P 1977Mol. Phys.34 2539

[4] Su S and Armstrog R L 1993J. Magn. ResonA 101265

[5] Nagel O A, Rama M E and Marin C A 1995PhysicaA 218487

[6] 1982 Acta Crystallogr.B 24 1968

[7] Van Vieck J H and Ollen J F 1951Physical7 205

[8] Nagel O A, Rama M E and Marin C A 1997 Appl. Magn. Resorl1 557



